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Abstract

We present a semi-implicit numerical method for micromagnetics simulations, in the presence of spin-currents. The
dynamics of the magnetization are described by the Landau–Lifshitz–Gilbert equation, while the dynamics of the spin
are described by a diffusion equation with discontinuous coefficients. The complexity of the method presented is compa-
rable to that of solving the linear heat equation with the Backward Euler method. To illustrate the procedure, we carry out
three dimensional simulations of the magnetization reversal process in a magnetic multilayer when a current flows perpen-
dicular to the layers. Spin-polarized currents are shown to decrease the coercive field, and to induce magnetization reversal
even in the absence of external magnetic fields.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Magnetic storage devices rely on the fact that ferromagnetic materials are typically bistable, and that it is
possible to switch between different states by applying a magnetic field. The discovery of the Giant Magneto-
Resistance effect has enabled the use of layered ferromagnetic materials in magnetic devices, such as magnetic
memories (MRAMs). Even in the absence of thermal effects, there are limitations in the storage capacity of
such devices due to the fact that as the size is decreased, the magnitude of the switching field increases, due
to an increase in shape anisotropy. Given that magnetic fields have long range interactions, the density of such
devices is limited.

A new mechanism for magnetization reversal in multilayers was proposed by Slonczweski [1] and Berger
[2,3]. In this new mechanism, an electric current flows perpendicular to the layers. The current is polarized
in the first layer, and the polarization travels with the current to the second layer, where it interacts with
the underlying magnetization. Since currents are localized in each cell, long range effects can be reduced.
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In the original model for spin polarized transport, the magnetization was assumed constant, or pinned, in
one of the layers, and the polarization was added as an extra field in the effective field. In addition, spin dif-
fusion and interfacial effects were neglected. These effects have been found to be important in magnetoresis-
tance experiments with a current perpendicular to the multilayer planes [4–6]. Recently, a new model for the
relaxation of the coupled system spin-magnetization has appeared in the literature [7,8]. This model includes
spatial variations in both spin and magnetization, and does not assume a priori that the magnetization is pin-
ned in one of the layers.

The dynamics of the spin accumulation are described by the diffusion equation [7]
os

ot
¼ �divJs � 2D0ðxÞ

s

k2
sf

� 2D0ðxÞ
s�m

k2
J

; ð1Þ
where s is the spin accumulation, m is the magnetization, Js is the spin current, D0 is the diffusion coefficient,
ksf is the characteristic length for spin-flip relaxation, and kJ is related to the electron’s mean free path. The
spin current is
Js ¼
blB

e
m� Je � 2D0ðxÞ rs� bb0m� rs �mð Þ½ �; ð2Þ
where Je is the applied electric current, lB = 9.2741 · 10�24 Am2 is the Bohr magneton, e = �1.602 · 10�19 As
is the charge of the electron, and 0 < b < 1 and 0 < b 0 < 1 are (dimensionless) spin-polarization parameters for
the magnetic layers. The diffusion coefficient D0 is discontinuous at the interface, but otherwise is positive and
bounded. Eq. (1) results from considering the transport in a multilayer as a diffusive process [8]. The last term
in (1) represents the interaction between the spin accumulation and the background magnetization, and is
responsible for the transfer of angular momentum between them.

The magnetization is zero outside the magnetic samples, and the spin current is continuous across the fer-
romagnetic-nonmagnetic interface [9]. As a consequence, the normal derivative of s is discontinuous at the
interface, and therefore standard second order differences do not produce good results in this context.

The relaxation process of the magnetization inside the ferromagnetic samples is described by the Landau–
Lifshitz–Gilbert (LLG) equation [10,11]:
om

ot
¼ �cm� he þ csð Þ þ am� om

ot
: ð3Þ
In (3), c = 1.76 · 1011 (Ts)�1 is the gyromagnetic ratio, c represents the strength of the interaction between the
spin and the magnetization, and a is the dimensionless damping parameter. Given that the length of the mag-
netization is preserved by Eq. (3), we have normalized the magnetization so that jmj = 1. The first term in (3)
describes a precession around the local field he + cs, while the second term accounts for dissipation in the sys-
tem. The effective field, he, is defined as
he ¼ �
2Ku

M s

m2e2 þ m3e3ð Þ þ 2Cex

M s

Dmþ l0 hs þ h0ð Þ; ð4Þ
where we have used e2 = (0,1,0), and e3 = (0,0,1). In (4), l0 = 4p · 10�7N/A2 is the permeability of vacuum,
and Ms is the saturation magnetization. The first and second terms on the right hand side of (4) are the anisot-
ropy and exchange fields, respectively, with Ku and Cex being material constants. h0 is the externally applied
magnetic field.

The stray field, hs = �$u is obtained by solving the magnetostatic equation:
Du ¼ div m; x 2 X

Du ¼ 0; x 2 Xc
ð5Þ
with jump boundary conditions
½u�oX ¼ 0;

ou
om

� �
oX

¼ �m � m;
ð6Þ



C.J. Garcı́a-Cervera, X.-P. Wang / Journal of Computational Physics 224 (2007) 699–711 701
where X is the volume occupied by the ferromagnetic samples, and [Æ] represents the jump at the material/vac-
uum interface. The solution to this equation is
Fig. 1.
magne
uðxÞ ¼
Z

X
rNðx� yÞ �mðyÞdy; ð7Þ
where X is the volume occupied by the ferromagnetic sample, and N(x) = �1/(4pjxj) is the Newtonian
potential.

In realistic micromagnetics simulations of the LLG (3), it is necessary to resolve a wide range of spatial
length scales, and in particular magnetic walls and magnetic vortices, since these are responsible for the switch-
ing anomalies observed experimentally [12,13]. High order accuracy can be obtained with explicit numerical
schemes, such as the Runge–Kutta and predictor–corrector schemes [14]. Numerical methods that preserve
some of the geometric properties of the equations have also been implemented [15,16]. However, the time step
size in these methods is severely constrained by the stability of the numerical scheme. For physical constants
characteristic of the permalloy (Ms = 8.0 · 105 A/m, Ku = 5.0 · 102 J/m3, A = 1.3 · 10�11 J/m, c = 1.76 ·
1011 T�1 s�1), with a cell size Dx = 0.004 lm (256 grid points in a 1 lm long sample), and using fourth order
Runge–Kutta, a time step roughly of the order Dt � .25 ps is necessary for numerical stability. If the cell size is
decreased by a factor of 10, the time step Dt must be reduced by a factor of 100.

In order to overcome the stability constraint of explicit schemes, one usually resorts to implicit schemes
[17]. However, due to the strong nonlinearities present in both the gyromagnetic and damping terms in the
LLG Eq. (3), a direct implicit discretization of the system is not efficient and is difficult to implement. The
Gauss–Seidel projection method (GSPM) [18,19] is an efficient implicit numerical scheme for the LLG Eq.
(3). Only linear systems of equations are solved, and the nonlinearity is introduced a posteriori. The method
is unconditionally stable, and the complexity is comparable to that of solving the linear heat equation using
the Backward Euler method.

In this article we develop an unconditionally stable numerical method for a three dimensional version of the
model presented in [7]. A splitting procedure is derived for the spin equation (1), which is subsequently com-
bined with the GSPM for the LLG.

The remainder of this article is organized as follows: In Section 2 we describe a second order accurate spa-
tial discretization, and we explain how this can be used with both explicit and implicit time evolution schemes.
An implicit scheme based on splitting of Eq. (1) is presented in Section 3. Finally, we use this method to sim-
ulate the magnetization reversal process in a multilayer in the presence of spin-polarized currents.

2. Spatial discretization

We consider a rectangular multilayer consisting of two ferromagnetic layers (FM1 and FM2) of thickness
D1 and D3, respectively, separated by a non-magnetic layer (NM) of thickness D2 (see Fig. 1). We only con-
FM2

NM

FM1

D3

D2

D1

Structure of the multilayer: Two ferromagnetic layers (FM1 and FM2) of thickness D1 and D3, respectively, separated by a non-
tic layer (NM) of thickness D2.
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sider here the case of a straight interface. The methodology presented here can be combined with the ideas
presented in [20] when arbitrarily shaped samples are considered. The domain is discretized using a uniform
mesh. The magnetization and the spin accumulation are defined at the center of the computational cells. The
spin current must be continuous at the interface between the ferromagnetic and non-magnetic materials:
Fig. 2.
so tha
�2Dout
0

osout
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m

� �
; ð8Þ
where we indicate by in and out the values of s and D0 inside and outside of the ferromagnetic layer,
respectively.

Consider the situation described in Fig. 2. The value s0 is an auxiliary value needed to impose the interface
condition (8), and to compute the second derivatives of the spin accumulation near the interface. To do this,
we construct interpolating polynomials in the interior and the exterior of the ferromagnetic layers. The interior
polynomial is defined by the values s0, s�1, s�2, and s�3. The exterior polynomial is defined by s0, s1, s2, and s3.

The value of m at the interface can be evaluated either via extrapolation from interior values,
m0 ¼
3m�1 �m�2

2
þOðDz2Þ ð9Þ
or taking into account that om
oz ¼ 0, so
m0 ¼ m�1 þOðDz2Þ: ð10Þ

The value of s0 may be determined (in terms of s�3, s�2, s�1, s1, s2, and s3) by imposing condition (8) to the
interior and exterior polynomials. The second derivatives of s near the interface are approximated by the sec-
ond derivatives of the corresponding polynomials.

2.1. Explicit time-stepping

To illustrate how to use this approach in combination with an explicit time-stepping procedure, consider
the following interpolating polynomials in the interior,
pinðzÞ ¼ s�3 þ
s�2 � s�3

Dz
ðz� z�3Þ þ

s�1 � 2s�2 þ s�3

2Dz2
ðz� z�3Þðz� z�2Þ

þ 8s0 � 15s�1 þ 10s�2 � 3s�3

15Dz3
ðz� z�3Þðz� z�2Þðz� z�1Þ; ð11Þ
and in the exterior:
poutðzÞ ¼ s3�
s2� s3

Dz
ðz� z3Þ þ

s1� 2s2þ s3

2Dz2
ðz� z3Þðz� z2Þ �

8s0� 15s1þ 10s2� 3s3

15Dz3
ðz� z3Þðz� z2Þðz� z1Þ:

ð12Þ
Discretization nodes and approximation of the second derivative at the ferromagnetic/non-magnetic interface. The figure is rotated
t the Z-axis looks horizontal.
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Using these formulas, we get, at the first interface:
p0inðz0Þ ¼
184s0 � 225s�1 þ 50s�2 � 9s�3

60Dz

p00inðz�1Þ ¼
16s0 � 25s�1 þ 10s�2 � s�3

5Dz2
;

ð13Þ
and
p0outðz0Þ ¼
�184s0 þ 225s1 � 50s2 þ 9s3

60Dz

p00outðz1Þ ¼
16s0 � 25s1 þ 10s2 � s3

5Dz2
:

ð14Þ
Substituting in (8), we get:
�2Dout
0

�184s0 þ 225s1 � 50s2 þ 9s3

60Dz
¼ � bjelB

e
m0 � 2Din

0

184s0 � 225s�1 þ 50s�2 � 9s�3

60Dz

�

� bb0 m0;
184s0 � 225s�1 þ 50s�2 � 9s�3

60Dz

� �
m0

�
ð15Þ
Taking the inner product with m0,
ðs0;m0Þ ¼
5Dzðf;m0Þ

24ðDout
0 þ Din

0 � Din
0 bb0jm0j2Þ

; ð16Þ
where
f ¼ 2Dout
0

225s1 � 50s2 þ 9s3

60Dz
� bjelB

e
m0

� 2Din
0

�225s�1 þ 50s�2 � 9s�3

60Dz
� bb0 m0;

�225s�1 þ 50s�2 � 9s�3

60Dz

� �
m0

� �
: ð17Þ
Once (s0,m0) is known, s0 can be determined from (15):
s0 ¼
5Dz

24ðDout
0 þ Din

0 Þ
24Din

0

5Dz
ðm0; s0Þ þ f

� �
: ð18Þ
This value of s0 can be used in formulas (11) and (12) to approximate the derivatives of s near the interface to
second order accuracy. An analogous procedure needs to be carried out at the second interface. Once the value
of s0 is known, the right hand side of (1) can be evaluated at time tn using formulas (13) and (14), and an ex-
plicit time stepping procedure such as the fourth order Runge–Kutta method can be used to advance in time.

2.2. Implicit time-stepping

The procedure described above can be used with an implicit time step as well. The resulting system of equa-
tions is still linear, but it has non-constant coefficients. We can obtain a linear system of equations with con-
stant coefficients if the following condition is imposed at the interface:
�2Dout
0

�184snþ1
0 þ 225snþ1

1 � 50snþ1
2 þ 9snþ1

3

60Dz
¼ � bjelB

e
mn

0 � 2Din
0

184snþ1
0 � 225snþ1

�1 þ 50snþ1
�2 � 9snþ1

�3

60Dz

�

� bb0 mn
0;

184sn
0 � 225sn

�1 þ 50sn
�2 � 9sn

�3

60Dz

� �
mn

0

�
: ð19Þ
In (19) we denote with the superscripts n and n + 1 the values of s at times tn and tn+1, respectively. The linear
terms are treated implicitly, and the nonlinear terms explicitly. Since 0 < b < 1 and jmj = 1, the stability of the
method is not affected by the explicit treatment of the nonlinear terms in the higher derivatives. This choice
also allows us to solve only linear systems of equations with constant coefficients. Then,
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snþ1
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Using this and (11) and (12), we obtain
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3. Temporal discretization: splitting algorithm

Stability issues require that an implicit scheme be used for the coupled system spin/magnetization, Eqs. (1)
and (3). We present here an unconditionally stable method for this coupled system based on a splitting of Eq.
(1). This splitting procedure is coupled to the GSPM for the Landau-Lifshitz equation [18,19].

To illustrate the procedure, we consider the following simplified one-dimensional case:
os

ot
¼ o

oz
aðzÞ os

oz
� b m;

os

oz

� �
m

� �� �
� aðzÞs� aðzÞs�m� om

oz
;

om

ot
¼ �m� o

2m

oz2
þ s

� �
þ am� om

ot
;

ð23Þ

aðzÞ ¼
ain inside the ferromagnetic sample;

aout outside the ferromagnetic sample:

�
ð24Þ
Given mn = m(tn) and sn = s(tn), the numerical method proceeds in three steps:

Step I. Solve the Cauchy problem
des
dt
¼ �aðzÞes � aðzÞes �mn;

esðtnÞ ¼ sn:

ð25Þ

The solution to this problem can be found analytically, and is given in Lemma (1) below.

Step II. Solve the following system of equations:
snþ1 � esðtnþ1Þ
Dt

¼ aðzÞfDz
2snþ1 � baðzÞDz m;Dzs

nð Þmnð Þ � Dzm
n: ð26Þ

The operator Dz denotes the approximation to the first derivative using standard second order dif-
ferences (centered in the interior of the domain, and one-sided near the endpoints). fDz

2 represents
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the approximation to the second derivative that uses standard centered differences away from the
interface, and next to the interface is given by (21) and (22). The resulting system is heptadiagonal,
and can be solved using Gauss elimination in O(N) operations.
Step III. Solve equation
om

ot
¼ �m� o

2m

oz2
þ snþ1

� �
þ am� om

ot
;

mðtn; zÞ ¼ mn;

from tn to tn+1 using the GSPM [18].
The GSPM is a semi-implicit method for the LLG equation based on a splitting of Eq. (3). Only linear sys-
tems of equations are solved, and the nonlinearity is added a posteriori. Therefore, the complexity of the split-
ting algorithm is comparable to that of solving the linear heat equation using the Backward Euler method. For
completeness, a description of the GSPM is included in Appendix A. For further details, see [18,19].

The following lemma has been used in Step I:

Lemma 1. Consider the following ordinary differential equation:
dw

ds
¼ �aw� bw�m; ð27Þ
where a; b 2 R, and m 2 R3 are constants. The solution to (27) with initial condition w(s0) = w0 is
wðsÞ ¼ e�aðs�s0ÞRT �
1 0 0

0 cosðbðs� s0ÞÞ � sinðbðs� s0ÞÞ
0 sinðbðs� s0ÞÞ cosðbðs� s0ÞÞ

0
B@

1
CA � R � w0; ð28Þ
where
R ¼

m1 m2 m3

0 m3ffiffiffiffiffiffiffiffiffiffi
m2

2
þm2

3

p � m2ffiffiffiffiffiffiffiffiffiffi
m2

2
þm2

3

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ m2
3

p
m1m2ffiffiffiffiffiffiffiffiffiffi
m2

2
þm2

3

p m1m3ffiffiffiffiffiffiffiffiffiffi
m2

2
þm2

3

p

0
BBB@

1
CCCA ð29Þ
satisfies RT Æ R = RT Æ RT = I, R Æ m = e1, and det(R) = 1.

Remark 2. The matrix R can be obtained as a product of Givens rotations, and therefore it is an orthogonal
matrix.

Remark 3. If m2 = m3 = 0, we define
R ¼
m1 0 0

0 1 0

0 0 m1

0
B@

1
CA ð30Þ
Proof of Lemma 1. Define q ¼ eaðs�s0Þw. Then q(s0) = w(s0), and q satisfies the equation
dq

ds
¼ �bq�m: ð31Þ
Since m = RT Æ e1, we get
dq

ds
¼ �bRT � ðR � qÞ � e1ð Þ: ð32Þ
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Therefore, v = R Æ q satisfies equation
dv

ds
¼ �bv� e1; ð33Þ
with initial value v(s0) = R Æ w0. The solution to this initial value problem is
vðsÞ ¼
1 0 0

0 cosðbðs� s0ÞÞ � sinðbðs� s0ÞÞ
0 sinðbðs� s0ÞÞ cosðbðs� s0ÞÞ

0
B@

1
CA � R � w0: ð34Þ
The proof concludes by undoing the changes, and rewriting (34) is terms of w. h
3.1. Accuracy check: exact solutions

To check the performance of the splitting method described in Section 3, we consider the forced system
os

ot
¼ o

oz
aðzÞ os

oz
� b m;

os

oz

� �
m

� �� �
� aðzÞs� aðzÞs�m� om

oz
þ g;

om

ot
¼ �m� o2m

oz2
þ sþ f

� �
þ am� om

ot
;

ð35Þ
for z 2 [0,D], where D = D1 + D2 + D3, with boundary conditions
os

oz
¼ 0; z ¼ 0;D;

om

oz
¼ 0; z ¼ 0;D1;D1 þ D2;D:

ð36Þ
We have chosen D1 = D3 = 0.8, and D2 = 0.4. The diffusion coefficient takes the values ain = 2, and aout = 1.
We consider a solution of the form m = (coshcosw, cosh sinw, sinh), where
hðzÞ ¼ cosðtÞ cosðpz=D1Þ;
wðzÞ ¼ cosð2tÞ cosð3pz=D1Þ;

ð37Þ
in FM1, and
hðzÞ ¼ cosðtÞ cosðpðz� D1 � D2Þ=D3Þ;
wðzÞ ¼ cosð2tÞ cosð3pðz� D1 � D2Þ=D3Þ;

ð38Þ
in FM2. We also define
sinðt; zÞ ¼ sinðtÞ
cos pz=Dð Þ

sin p z=D� 1=2ð Þð Þ
cos 3pz=Dð Þ

0
B@

1
CA; ð39Þ
inside the ferromagnetic layers FM1 [ FM2.
In the non-magnetic layer, we define
soutðt; zÞ ¼ aðtÞ sinhðz� D1Þ þ bðtÞ coshðz� D1Þ þ cðtÞðz� D1Þ þ dðtÞ; ð40Þ

where a; b; c; d 2 R3 are determined by imposing the interface conditions:
sin ¼ sout;

aout

osout

oz
¼ ain

osin

oz
� b

osin

oz
;m

� �
m

� �
�m;

ð41Þ
at z = D1 and z = D1 + D2.



Table 1
Error in the solution (m, s) at time t = 1 for different time steps

Temporal accuracy

Dt L1-error in m1 L1-error in m2 L1-error in s Order

10�1 1.0931 · 10�2 5.6534 · 10�2 5.5155 · 10�2

10�1/2 5.5623 · 10�3 3.1745 · 10�2 2.2965 · 10�2 1.02378

10�1/4 2.7993 · 10�3 1.7308 · 10�2 1.0419 · 10�2 1.00198

10�1/8 1.3997 · 10�3 9.1363 · 10�3 4.94153 · 10�3 0.99930

The error is measured in the sup-norm. We use Dz = D/128. The splitting method presented is first order in time.

Table 2
Error in the solution (m,s) at time t = 1 for different spatial resolutions

Spatial accuracy

Dz L1-error in m1 L1-error in m2 L1-error in s Order

6.2500 · 10�3 5.1971 · 10�2 6.5927 · 10�2 7.6697 · 10�2

3.1250 · 10�3 1.1191 · 10�2 1.4404 · 10�2 1.7294 · 10�2 2.18621
1.5625 · 10�3 2.7992 · 10�3 3.6119 · 10�3 4.3678 · 10�3 1.99340
7.8125 · 10�4 6.9534 · 10�4 8.9778 · 10�4 1.0842 · 10�3 2.00931

The error is measured in the sup-norm. The time step is fixed at Dt = 10�6. The method is globally second order accurate in space.
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The forcing g and f was chosen such that the functions m and s defined above are in fact solutions to system
(35).

The errors for different spatio-temporal resolutions are shown in Tables 1 and 2. The errors are computed
in the L1-norm. It follows from these results that the method is first order accurate in time. In addition, full
second order spatial accuracy is recovered, even near the interface.

4. Magnetization reversal in multilayers

We have used this method to carry out fully resolved three dimensional simulations of the magnetization
reversal process in a nanometer sized multilayer, using equations (1)–(7). For the ferromagnetic layers, we
have used physical constants characteristic of the Permalloy: Ms = 8.0 · 105 A/m, Ku = 5.0 · 102 J/m3, and
Cex = 1.3 · 10�11 J/m. Typical values for the remaining physical constants are [8]: je = 1011 A/m2,
D0 = 10�3 m2/s for the magnetic layer, and D0 = 5 · 10�3 m2/s for the nonmagnetic layer, kJ = 4 nm,
ksf = 10 nm, c = 3.125 · 10�3 N/A2, b = 0.9, b 0 = 0.8, and a = 0.1. The current flows in the positive z direc-
tion. The simulations presented here were carried out using Dz = 2 nm, and Dt = 10�12 s. No appreciable dif-
ferences were found when smaller values of Dz or Dt were used. For the simulations presented here, formulas
(9) and (10) were tested, with no appreciable difference in the results.

4.1. Reduction in the coercive field

We have considered a multilayer of in-plane dimensions 128 nm · 64 nm, and thicknesses D1 = 100 nm,
D2 = 20 nm, and D3 = 60 nm. We have computed the hysteresis loop with and without spin currents. The hys-
teresis loop is computed in the following way: Initially, an external field of magnitude h0 is applied in order to
saturate the sample, and the magnetization is allowed to reach equilibrium state. Once steady state is reached,
the applied field is reduced, and the magnetization is allowed to reach equilibrium again. This process is
repeated, decreasing the applied field each time by a fixed amount, until a negative field of magnitude h0 is
reached. In the hysteresis loop, we plot the average equilibrium magnetization as a function of the applied
field. In our example, we consider h0 = 600 Oe.

Typically, in a multilayer, the magnetization can be found in one of two states: The S state, and the C
state, depicted schematically in Fig. 3. The magnetization reversal process associated to the S state usually



a b c

Fig. 3. Sketch of the (a) S state, (b) C state, and (c) Vortex state. The domain walls are depicted, and the arrows indicate the orientation of
the magnetization.
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occurs by a rotation of the magnetization in the interior of the domain, followed by the appearance of
boundary layers, which can be removed if the applied field is strong enough. In the C state, the magne-
tization reversal process occurs by nucleating a magnetic vortex, which is subsequently expelled. Under-
standing the reversal process is of technological importance, given that if the boundary layers are not
removed, or the vortex is not expelled, the information stored in the magnetic memory is essentially
destroyed [18,13,12].

In Fig. (4) we have plotted the hysteresis loop associated with a double layer initialized with S states in each
layer, and the loop associated with a double layer with C states in each layer. For the given dimensions, and in
the absence of spin currents, a magnetic field of �600 Oe is not strong enough to switch the magnetization
when both layers are in the S state. When both layers are in the C state, in the absence of spin currents, a
vortex nucleates at approximately �260 Oe. A field of approximately �330 Oe is required to expel the vortex,
and successfully reverse the magnetization.

When spin currents are present, the coercive field is reduced in both situations. The presence of a perpen-
dicular current favors the nucleation of a magnetic vortex in the ferromagnetic sample, which has been found
experimentally to reduce the coercive field [21]. In our simulation, the nucleation occurs at approximately
�45 Oe, and the switching occurs at �250 Oe. In Fig. 5 we show the S state, and the intermediate vortex states
that nucleates inside the sample during the reversal of the S state. For clarity of presentation, we plot only the
in-plane components of the magnetization, at the center slice of the top layer.
−6 −4 −2 0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

He (mT)

<
M

1>
/M

s

S/S −  Without current

S/S −  With current

C/C −  Without Current

C/C −  With current

Fig. 4. Hysteresis loops for a multilayer with and without spin currents. The presence of spin currents lowers significantly the coercive
field.
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Fig. 5. States in the hysteresis loop: (a) S state, (b) nucleated vortex.
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4.2. Current-driven magnetization reversal

One of the main technological applications of spin-polarized transport is the magnetization reversal in a
multilayer in the absence of externally applied magnetic fields, as this can allow an increase in the density
of magnetic memories. For this experiment, we have considered a multilayer with the same in-plane
dimensions as before, but with thicknesses D1 = 200 nm, D2 = 20 nm, and D3 = 60 nm. The multilayer was
initialized in a uniform state, and it was allowed to reach steady state. Subsequently, a perpendicular current
of magnitude je = 1011 As was applied for 10 ns, and then it was removed. The average magnetization in the
top layer is plotted in Fig. 6 as a function of time. The magnetization in the top layer was reversed as a con-
sequence of the spin-currents, in agreement with recent experiments.

In conclusion, we have presented an implicit numerical method for the coupled system spin/magnetization
in ferromagnetic multilayers. The complexity of the method is comparable with that of solving the linear heat
equation with the Backward Euler method. Fully three dimensional simulations of the magnetization reversal
process were carried out. In our experiments we have shown that the presence of spin-currents can significantly
reduce the coercive field, by favoring the nucleation of magnetic vortices inside the ferromagnetic layer. In
addition, we demonstrated that the spin current can induce the magnetization reversal process, even in the
absence of externally applied magnetic fields.
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Fig. 6. Spin-current induced switching. The magnetic sample is saturated, and a perpendicular current flows through the multilayer,
inducing the magnetization reversal process.
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Appendix A. Gauss–Seidel projection method

For completeness, we include here a description of the GSPM, when spin currents are present. It is conve-
nient to rewrite equation (3) in the following form:
om

ot
¼ �m� �Dmþ fðm; sÞð Þ � am� m� �Dmþ fðm; sÞð Þð Þ; ðA:1Þ
where � = 2Cexc/(Ms(1 + a2)), and
fðm; sÞ ¼ c
1þ a2

� 2Ku

M s

m2e2 þ m3e3ð Þ þ l0 hs þ h0ð Þ þ cs

� �
: ðA:2Þ
Eq. (A.1) is obtained by computing the vector product of m and Eq. (3), and solving for m� om
ot .

In the GSPM, we solve Eq. (A.1) in three steps:

Step 1. Implicit Gauss–Seidel.
gn
i ¼ ðI � �DtDhÞ�1ðmn

i þ Dtf n
i Þ;

g�i ¼ ðI � �DtDhÞ�1ðm�i þ Dtf �i Þ; i ¼ 1; 2; 3 ðA:3Þ
m�1
m�2
m�3

0
B@

1
CA ¼

mn
1 þ ðgn

2mn
3 � gn

3mn
2Þ

mn
2 þ ðgn

3m�1 � g�1mn
3Þ

mn
3 þ ðg�1m�2 � g�2m�1Þ

0
B@

1
CA; ðA:4Þ

where f n
i ¼ fiðmn; snÞ, and f �i ¼ fiðm�; snÞ, i.e., the most current values for m are used in f*. Note that

the value of s is frozen at t = tn.

Step 2. Heat flow without constraints.
m��1
m��2
m��3

0
B@

1
CA ¼

m�1 þ aDtð�Dhm��1 þ f �1 Þ
m�2 þ aDtð�Dhm��2 þ f �2 Þ
m�3 þ aDtð�Dhm��3 þ f �3 Þ

0
B@

1
CA: ðA:5Þ
Step 3. Projection onto S2.
mnþ1
1

mnþ1
2

mnþ1
3

0
B@

1
CA ¼ 1

jm��j

m��1
m��2
m��3

0
B@

1
CA: ðA:6Þ
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